Logo
  • GETTING STARTED

EXAMPLES

  • Time Phase Relation Theoretical
  • Doppler Theoretical in four scenarios
  • Density Through the Orbit and Absorption Column
  • Density and Ionization Parameter in the Orbital Path of Radiation
  • Ionization Map of 4U0114+65
  • Ns pulse shape in Vela X-1
  • Fe XXV Doppler Shifts Cen X-3
    • DISC IN ORBIT
    • SIMPLE ORBIT
    • SIMPLE SPIRAL
    • SPIRAL IN ORBIT
  • FUNCTIONS
  • CONTRIBUTE
  • REFERENCES
xraybinaryorbit
  • EXAMPLES
  • Fe XXV Doppler Shifts Cen X-3

Doppler Shifts in Cen X-3 Chandra Observation¶

Within a Cen X-3 Chandra observation, some very prominent Doppler shifts in the Fe xxv central energy were observed in phase resolved analysis.

In this example, we will explore how these shifts are compatible with the emitting plasma's ballistic movement around the orbit.

In [1]:
Copied!
import xraybinaryorbit
from xraybinaryorbit import *
import xraybinaryorbit from xraybinaryorbit import *

HELLO, nice to see you! :)

PLEASE READ THIS, IT'S VERY IMPORTANT:

These are the units that must be used within this package:

- Rstar: Solar radius
- Mstar: Solar masses
- Inclination: Sexagesimal degrees
- Periapsis: Sexagesimal degrees
- Semimajor: Stellar radius
- Periods: Days (Periods in the case of the period_sliding_window function will support any units)
- Iphase: Radians

A list of the functions contained in this package will be displayed by runing the function list_functions().

As these functions use a lot of parameters, which can sometimes be difficult to handle, we have implemented a user-friendly method for parameter input:
A form will be displayed, and the parameters will be saved in the directory for further interactions. These saved parameters will be used if new parameters are not provided.
For the function to work, the submit button must be pressed.
If the parameters are already saved within the working directory, setting "load_directly=True" no form will be displayed and that parameters will be used within the function.
Alternatively, the input parameters or bounds can be provided as lists, by providing a "parameter_list" or "bound_list" as imputs.

Please, take into account that fits in general will take A LOT of time to complete.

If you need help, contact graciela.sanjurjo@ua.es.

In [3]:
Copied!
# REAL DATA

# Known orbital phases for each time bin
phase_array = np.array([0.21901885, 0.24120082, 0.2522918 , 0.26338279, 0.27447377,
       0.28556475, 0.29665574, 0.30774672, 0.31883771, 0.32715595,
       0.33270144, 0.33824693, 0.35488341, 0.3604289 , 0.36597439,
       0.37706538, 0.38815636, 0.40479284, 0.41033833])

# Time bins: The beguining and end are provided. 
x = np.array([[7.97000557e+08, 7.97002557e+08],
       [7.97004557e+08, 7.97006557e+08],
       [7.97006557e+08, 7.97008557e+08],
       [7.97008557e+08, 7.97010557e+08],
       [7.97010557e+08, 7.97012557e+08],
       [7.97012557e+08, 7.97014557e+08],
       [7.97014557e+08, 7.97016557e+08],
       [7.97016557e+08, 7.97018557e+08],
       [7.97018557e+08, 7.97020557e+08],
       [7.97020557e+08, 7.97021557e+08],
       [7.97021557e+08, 7.97022557e+08],
       [7.97022557e+08, 7.97023557e+08],
       [7.97025557e+08, 7.97026557e+08],
       [7.97026557e+08, 7.97027557e+08],
       [7.97027557e+08, 7.97028557e+08],
       [7.97029557e+08, 7.97030557e+08],
       [7.97031557e+08, 7.97032557e+08],
       [7.97034557e+08, 7.97035557e+08],
       [7.97035557e+08, 7.97036557e+08]])

# Emission line evolution
y = np.array([6.68379, 6.80991, 6.67892, 6.70604, 6.59522, 6.69305, 6.78357,
       6.7602 , 6.71054, 6.59051, 6.58941, 6.6197 , 6.6798 , 6.73628,
       6.72427, 6.70338, 6.81985, 6.60144, 6.60003])



# Emission line evolution positive and negative errors
y_err = np.array([[0.01962, 0.01599, 0.0353 , 0.02163, 0.01522, 0.02066, 0.01784,
        0.0408 , 0.09066, 0.01051, 0.00941, 0.0344 , 0.0998 , 0.02562,
        0.02753, 0.03273, 0.08475, 0.02144, 0.02003],
       [0.09961, 0.01009, 0.04271, 0.02659, 0.12467, 0.01667, 0.03643,
        0.03073, 0.03159, 0.02861, 0.01781, 0.04638, 0.09535, 0.0397 ,
        0.03344, 0.10163, 0.00015, 0.06801, 0.04635]])
# REAL DATA # Known orbital phases for each time bin phase_array = np.array([0.21901885, 0.24120082, 0.2522918 , 0.26338279, 0.27447377, 0.28556475, 0.29665574, 0.30774672, 0.31883771, 0.32715595, 0.33270144, 0.33824693, 0.35488341, 0.3604289 , 0.36597439, 0.37706538, 0.38815636, 0.40479284, 0.41033833]) # Time bins: The beguining and end are provided. x = np.array([[7.97000557e+08, 7.97002557e+08], [7.97004557e+08, 7.97006557e+08], [7.97006557e+08, 7.97008557e+08], [7.97008557e+08, 7.97010557e+08], [7.97010557e+08, 7.97012557e+08], [7.97012557e+08, 7.97014557e+08], [7.97014557e+08, 7.97016557e+08], [7.97016557e+08, 7.97018557e+08], [7.97018557e+08, 7.97020557e+08], [7.97020557e+08, 7.97021557e+08], [7.97021557e+08, 7.97022557e+08], [7.97022557e+08, 7.97023557e+08], [7.97025557e+08, 7.97026557e+08], [7.97026557e+08, 7.97027557e+08], [7.97027557e+08, 7.97028557e+08], [7.97029557e+08, 7.97030557e+08], [7.97031557e+08, 7.97032557e+08], [7.97034557e+08, 7.97035557e+08], [7.97035557e+08, 7.97036557e+08]]) # Emission line evolution y = np.array([6.68379, 6.80991, 6.67892, 6.70604, 6.59522, 6.69305, 6.78357, 6.7602 , 6.71054, 6.59051, 6.58941, 6.6197 , 6.6798 , 6.73628, 6.72427, 6.70338, 6.81985, 6.60144, 6.60003]) # Emission line evolution positive and negative errors y_err = np.array([[0.01962, 0.01599, 0.0353 , 0.02163, 0.01522, 0.02066, 0.01784, 0.0408 , 0.09066, 0.01051, 0.00941, 0.0344 , 0.0998 , 0.02562, 0.02753, 0.03273, 0.08475, 0.02144, 0.02003], [0.09961, 0.01009, 0.04271, 0.02659, 0.12467, 0.01667, 0.03643, 0.03073, 0.03159, 0.02861, 0.01781, 0.04638, 0.09535, 0.0397 , 0.03344, 0.10163, 0.00015, 0.06801, 0.04635]])

In this observation, the Fe xxvi emission line energy exhibited remarkable Doppler shifts. In this example, we will utilize the fitting functions from the xraybinaryorb package to disentangle this intriguing behavior.

The best model (phisical interpretation + results) was achieved with the fit_disc_ps function, i.e, this emitting plasma is likely orbiting around the compact object, traveling in its orbit.

In [4]:
Copied!
plt.errorbar(phase_array,y, yerr =y_err,fmt="k", alpha=0.5)
plt.errorbar(phase_array,y,fmt="k")
plt.xlabel("Orbital phase")
plt.ylabel("Fe xxi energy evolution")
plt.errorbar(phase_array,y, yerr =y_err,fmt="k", alpha=0.5) plt.errorbar(phase_array,y,fmt="k") plt.xlabel("Orbital phase") plt.ylabel("Fe xxi energy evolution")
Out[4]:
Text(0, 0.5, 'Fe xxi energy evolution')
No description has been provided for this image

DISC IN ORBIT¶

In [5]:
Copied!
lower_bound = [0.18,1.5,2.087,0.0,  0.0,   67.0,11.8,18.7, 1.33, 0.0,0.5,0.14,0.0, 0.0,  67.0,1e-60,6.63,0.0]
upper_bound = [0.25,1.7,2.09, 1e-05,1e-70,76.7, 12.2,22.77,1.45,0.99,1.0,0.16,0.46,360.0,76.7,1e-22,6.7,1e-70]

bound_disc= lower_bound, upper_bound

result, phase, dphase, predicted_data, r_squared = fit_disc_ps(x, y, y_err=y_err, 
                                                               num_iterations=2, maxiter = 100, swarmsize = 10, 
                                                               units="keV",method_="extended",
                                                               extended_binsize=0.01,bound_list = bound_disc)

plt.plot(phase_array,  predicted_data,"o:")
plt.errorbar(phase_array, y, yerr=y_err)
plt.xlabel("Orbital phase")
plt.ylabel("Fe xvv Doppler shifts")

result
lower_bound = [0.18,1.5,2.087,0.0, 0.0, 67.0,11.8,18.7, 1.33, 0.0,0.5,0.14,0.0, 0.0, 67.0,1e-60,6.63,0.0] upper_bound = [0.25,1.7,2.09, 1e-05,1e-70,76.7, 12.2,22.77,1.45,0.99,1.0,0.16,0.46,360.0,76.7,1e-22,6.7,1e-70] bound_disc= lower_bound, upper_bound result, phase, dphase, predicted_data, r_squared = fit_disc_ps(x, y, y_err=y_err, num_iterations=2, maxiter = 100, swarmsize = 10, units="keV",method_="extended", extended_binsize=0.01,bound_list = bound_disc) plt.plot(phase_array, predicted_data,"o:") plt.errorbar(phase_array, y, yerr=y_err) plt.xlabel("Orbital phase") plt.ylabel("Fe xvv Doppler shifts") result
Loaded bounds from the provided array:
iphase  0.18 - 0.25
semimajor  1.5 - 1.7
orbitalperiod  2.087 - 2.09
eccentricity  0.0 - 1e-05
periapsis  0.0 - 1e-70
inclination  67.0 - 76.7
Rstar  11.8 - 12.2
Mstar1  18.7 - 22.77
Mstar2  1.33 - 1.45
iphase2  0.0 - 0.99
semimajor2  0.5 - 1.0
orbitalperiod2  0.14 - 0.16
eccentricity2  0.0 - 0.46
periapsis2  0.0 - 360.0
inclination2  67.0 - 76.7
Mass3  1e-60 - 1e-22
feature  6.63 - 6.7
wind_vel  0.0 - 1e-70

Stopping search: Swarm best objective change less than 1e-08
Stopping search: Swarm best objective change less than 1e-08
Out[5]:
Name of the parameter iphase semimajor orbitalperiod eccentricity periapsis inclination Rstar Mstar1 Mstar2 iphase2 semimajor2 orbitalperiod2 eccentricity2 periapsis2 inclination2 Mass3 feature wind_vel
Value 0.25 1.500000 2.090000 0.000000 9.208236e-72 67.577456 12.170968 22.613230 1.364358 0.0 0.918103 0.143691 0.216322 202.394165 72.606602 3.964419e-23 6.687392 1.195249e-71
Std 0.00 0.050169 0.001172 0.000004 4.600157e-72 3.994346 0.168759 1.208276 0.013431 0.0 0.034347 0.000094 0.066788 6.900522 1.484255 4.377393e-24 0.006667 2.620325e-71
No description has been provided for this image
In [6]:
Copied!
result, phase, dphase, predicted_data, r_squared = fit_disc_ls(x, y, y_err=y_err,  
                                                               units="keV",method_="discrete",
                                                               extended_binsize=0.01, 
                                                               bound_list = bound_disc)


plt.plot(phase_array,  predicted_data,"o:")
plt.errorbar(phase_array, y, yerr=y_err)
plt.xlabel("Orbital phase")
plt.ylabel("Fe xvv Doppler shifts")

result
result, phase, dphase, predicted_data, r_squared = fit_disc_ls(x, y, y_err=y_err, units="keV",method_="discrete", extended_binsize=0.01, bound_list = bound_disc) plt.plot(phase_array, predicted_data,"o:") plt.errorbar(phase_array, y, yerr=y_err) plt.xlabel("Orbital phase") plt.ylabel("Fe xvv Doppler shifts") result
The number of time points does not allow an extended approach. Changing to discrete
Loaded bounds from the provided array:
iphase  0.18 - 0.25
semimajor  1.5 - 1.7
orbitalperiod  2.087 - 2.09
eccentricity  0.0 - 1e-05
periapsis  0.0 - 1e-70
inclination  67.0 - 76.7
Rstar  11.8 - 12.2
Mstar1  18.7 - 22.77
Mstar2  1.33 - 1.45
iphase2  0.0 - 0.99
semimajor2  0.5 - 1.0
orbitalperiod2  0.14 - 0.16
eccentricity2  0.0 - 0.46
periapsis2  0.0 - 360.0
inclination2  67.0 - 76.7
Mass3  1e-60 - 1e-22
feature  6.63 - 6.7
wind_vel  0.0 - 1e-70

Out[6]:
Name of the parameter iphase semimajor orbitalperiod eccentricity periapsis inclination Rstar Mstar1 Mstar2 iphase2 semimajor2 orbitalperiod2 eccentricity2 periapsis2 inclination2 Mass3 feature wind_vel
Value 0.229421 1.602705e+00 2.088416 0.000005 5.000000e-71 7.185122e+01 1.202115e+01 2.073527e+01 1.389881e+00 0.051058 9.478598e-01 0.149553 0.309786 179.230921 7.188573e+01 5.000000e-23 6.687091 5.000000e-71
Std 95.773487 3.305021e+06 17491.780267 1018.059231 1.510464e+01 3.136903e+08 2.269546e+07 3.994571e+07 1.581843e+06 0.605037 2.592831e+06 0.000017 1.071481 141.799174 1.839176e+08 0.000000e+00 163.553841 0.000000e+00
No description has been provided for this image

SIMPLE ORBIT¶

In [9]:
Copied!
result, phase,  predicted_data, r_squared = fit_orbit_ps(x, y, y_err=y_err, 
                                                         num_iterations=2, maxiter = 100, swarmsize = 10, 
                                                         units="keV",method_="extended",
                                                         extended_binsize=0.01, load_directly=False)

plt.plot(phase_array,  predicted_data,"o:")
plt.errorbar(phase_array, y, yerr=y_err)
plt.xlabel("Orbital phase")
plt.ylabel("Fe xvv Doppler shifts")

result
result, phase, predicted_data, r_squared = fit_orbit_ps(x, y, y_err=y_err, num_iterations=2, maxiter = 100, swarmsize = 10, units="keV",method_="extended", extended_binsize=0.01, load_directly=False) plt.plot(phase_array, predicted_data,"o:") plt.errorbar(phase_array, y, yerr=y_err) plt.xlabel("Orbital phase") plt.ylabel("Fe xvv Doppler shifts") result
Bounds after modification or user input:
iphase  0.18 - 0.25
semimajor  0.1 - 0.7
orbitalperiod  0.1 - 0.3
eccentricity  0.0 - 0.9
periapsis  0.0 - 1e-70
inclination  67.0 - 76.7
Rstar  11.8 - 12.2
Mstar1  18.7 - 22.77
Mstar2  1.33 - 1.45
wind_vel  0.0 - 0.99
feature  6.63 - 6.67

Stopping search: Swarm best objective change less than 1e-08
Stopping search: Swarm best objective change less than 1e-08
Out[9]:
Name of the parameter iphase semimajor orbitalperiod eccentricity periapsis inclination Rstar Mstar1 Mstar2 wind_vel feature
Value 0.214426 0.607301 0.155116 0.254905 3.553538e-71 73.573204 11.961102 21.042315 1.404470 0.310709 6.67
Std 0.011215 0.072998 0.006641 0.151526 2.439175e-71 0.679432 0.054641 0.355267 0.001021 0.102472 0.00
No description has been provided for this image
In [11]:
Copied!
result, phase, predicted_data, r_squared = fit_orbit_ls(x, y, y_err=y_err, 
                                                        units="keV",method_="discrete",
                                                        extended_binsize=0.01, load_directly=False)

plt.plot(phase_array,  predicted_data,"o:")
plt.errorbar(phase_array, y, yerr=y_err)
plt.xlabel("Orbital phase")
plt.ylabel("Fe xvv Doppler shifts")

result
result, phase, predicted_data, r_squared = fit_orbit_ls(x, y, y_err=y_err, units="keV",method_="discrete", extended_binsize=0.01, load_directly=False) plt.plot(phase_array, predicted_data,"o:") plt.errorbar(phase_array, y, yerr=y_err) plt.xlabel("Orbital phase") plt.ylabel("Fe xvv Doppler shifts") result
The number of time points does not allow an extended approach. Changing to discrete
Bounds after modification or user input:
iphase  0.18 - 0.25
semimajor  0.5 - 1.0
orbitalperiod  0.1 - 0.25
eccentricity  0.0 - 0.3
periapsis  0.0 - 360.0
inclination  67.0 - 76.7
Rstar  11.8 - 12.2
Mstar1  18.7 - 22.77
Mstar2  1.33 - 1.45
wind_vel  0.0 - 0.99
feature  6.63 - 6.67

Out[11]:
Name of the parameter iphase semimajor orbitalperiod eccentricity periapsis inclination Rstar Mstar1 Mstar2 wind_vel feature
Value 0.180000 0.908372 0.156026 0.300000 234.106099 7.468590e+01 1.211418e+01 2.143424e+01 1.430856 1.603272e-39 6.670000
Std 2.567568 459909.501250 0.021669 0.390541 1034.799705 4.495860e+07 6.987350e+06 8.941463e+06 774536.971182 4.583158e+04 0.059582
No description has been provided for this image

SIMPLE SPIRAL¶

In [9]:
Copied!
result, phase, predicted_data, r_squared = fit_spiral_ps(x, y, y_err=y_err, 
                                                         num_iterations=2, maxiter = 100, swarmsize = 10, 
                                                         units="keV",method_="extended",
                                                         extended_binsize=0.01, load_directly=False)

plt.plot(phase_array,  predicted_data,"o:")
plt.errorbar(phase_array, y, yerr=y_err)
plt.xlabel("Orbital phase")
plt.ylabel("Fe xvv Doppler shifts")

result
result, phase, predicted_data, r_squared = fit_spiral_ps(x, y, y_err=y_err, num_iterations=2, maxiter = 100, swarmsize = 10, units="keV",method_="extended", extended_binsize=0.01, load_directly=False) plt.plot(phase_array, predicted_data,"o:") plt.errorbar(phase_array, y, yerr=y_err) plt.xlabel("Orbital phase") plt.ylabel("Fe xvv Doppler shifts") result
Bounds after modification or user input:
iphase_spiral  0.0 - 1.0
semimajor_spiral  1.0 - 20.0
b  -1.0 - -0.001
omega  0.0 - 0.01
inclination_spiral  67.0 - 77.0
feature  6.63 - 6.7

Stopping search: Swarm best objective change less than 1e-08
Stopping search: Swarm best objective change less than 1e-08
Out[9]:
Name of the parameter iphase_spiral semimajor_spiral b omega inclination_spiral feature
Value 0.831337 13.049990 -0.00100 0.004289 69.090425 6.700000
Std 0.029064 0.103194 0.28238 0.001722 0.497996 0.003441
No description has been provided for this image
In [13]:
Copied!
result, phase, predicted_data, r_squared = fit_spiral_ls(x, y, y_err=y_err, 
                                                         units="keV",method_="discrete",
                                                         extended_binsize=0.01, load_directly=True)

plt.plot(phase_array,  predicted_data,"o:")
plt.errorbar(phase_array, y, yerr=y_err)
plt.xlabel("Orbital phase")
plt.ylabel("Fe xvv Doppler shifts")

result
result, phase, predicted_data, r_squared = fit_spiral_ls(x, y, y_err=y_err, units="keV",method_="discrete", extended_binsize=0.01, load_directly=True) plt.plot(phase_array, predicted_data,"o:") plt.errorbar(phase_array, y, yerr=y_err) plt.xlabel("Orbital phase") plt.ylabel("Fe xvv Doppler shifts") result
The number of time points does not allow an extended approach. Changing to discrete
Loaded bounds from file:
iphase_spiral 0.0 - 1.0
semimajor_spiral 1.0 - 100.0
b -1.0 - 0.0
omega 0.0 - 1.0
inclination_spiral 0.0 - 90.0
feature 6.63 - 6.7

Coefficient of Determination (R-squared): 0.0003
Name of the parameter  iphase_spiral  semimajor_spiral             b         omega  inclination_spiral   feature
Value                       0.500014      5.049513e+01 -5.000492e-01  4.999508e-01        4.499557e+01  6.689007
Std                         0.000248      7.086160e-11  1.124131e-08  7.156945e-09        6.245946e-11  0.020589
Out[13]:
Name of the parameter iphase_spiral semimajor_spiral b omega inclination_spiral feature
Value 0.500014 5.049513e+01 -5.000492e-01 4.999508e-01 4.499557e+01 6.689007
Std 0.000248 7.086160e-11 1.124131e-08 7.156945e-09 6.245946e-11 0.020589
No description has been provided for this image

SPIRAL IN ORBIT¶

In [14]:
Copied!
result, phase,predicted_data, r_squared = fit_spiral_in_orbit_ps(x, y, y_err=y_err, 
                                                                          num_iterations=2, maxiter = 100, swarmsize = 30,  
                                                                          units="keV",method_="extended",
                                                                          extended_binsize=0.01, load_directly=False)

plt.plot(phase_array,  predicted_data,"o:")
plt.errorbar(phase_array, y, yerr=y_err)
plt.xlabel("Orbital phase")
plt.ylabel("Fe xvv Doppler shifts")

result
result, phase,predicted_data, r_squared = fit_spiral_in_orbit_ps(x, y, y_err=y_err, num_iterations=2, maxiter = 100, swarmsize = 30, units="keV",method_="extended", extended_binsize=0.01, load_directly=False) plt.plot(phase_array, predicted_data,"o:") plt.errorbar(phase_array, y, yerr=y_err) plt.xlabel("Orbital phase") plt.ylabel("Fe xvv Doppler shifts") result
Bounds after modification or user input:
iphase_orbit  0.18 - 0.25
semimajor_orbit  1.56 - 1.6
orbitalperiod  2.08 - 2.1
eccentricity  0.0 - 1e-05
periapsis  0.0 - 1e-05
inclination  67.0 - 77.0
Rstar  11.8 - 12.2
Mstar1  18.7 - 22.77
Mstar2  1.33 - 1.45
iphase_spiral  0.0 - 1.0
semimajor_spiral  0.01 - 100.0
b  -0.1 - 0.0
omega  1e-07 - 0.1
inclination_spiral  67.0 - 77.0
feature  6.63 - 6.7

Stopping search: maximum iterations reached --> 100
Stopping search: Swarm best objective change less than 1e-08
Out[14]:
Name of the parameter iphase_orbit semimajor_orbit orbitalperiod eccentricity periapsis inclination Rstar Mstar1 Mstar2 iphase_spiral semimajor_spiral b omega inclination_spiral feature
Value 0.197037 1.587306 2.084676 0.000004 0.000008 73.143157 11.861213 22.244802 1.336289 0.645055 14.172908 -0.071236 0.000099 68.071782 6.679339
Std 0.005283 0.003933 0.004866 0.000002 0.000002 1.195020 0.031785 0.999569 0.034654 0.172345 0.543587 0.028510 0.001052 0.117379 0.009189
No description has been provided for this image
In [11]:
Copied!
result, phase, predicted_data, r_squared = fit_spiral_in_orbit_ls(x, y, y_err=y_err, 
                                                                          units="keV",method_="discrete",
                                                                          extended_binsize=0.01, load_directly=True)


plt.plot(phase_array,  predicted_data,"o:")
plt.errorbar(phase_array, y, yerr=y_err)
plt.xlabel("Orbital phase")
plt.ylabel("Fe xvv Doppler shifts")

result
result, phase, predicted_data, r_squared = fit_spiral_in_orbit_ls(x, y, y_err=y_err, units="keV",method_="discrete", extended_binsize=0.01, load_directly=True) plt.plot(phase_array, predicted_data,"o:") plt.errorbar(phase_array, y, yerr=y_err) plt.xlabel("Orbital phase") plt.ylabel("Fe xvv Doppler shifts") result
The number of time points does not allow an extended approach. Changing to discrete
Loaded bounds from file:
iphase_orbit 0.18 - 0.25
semimajor_orbit 1.56 - 1.6
orbitalperiod 2.08 - 2.1
eccentricity 0.0 - 1e-05
periapsis 0.0 - 1e-05
inclination 67.0 - 77.0
Rstar 11.8 - 12.2
Mstar1 18.7 - 22.77
Mstar2 1.33 - 1.45
iphase_spiral 0.0 - 1.0
semimajor_spiral 0.01 - 100.0
b -0.1 - 0.0
omega 1e-07 - 0.1
inclination_spiral 67.0 - 77.0

Out[11]:
Name of the parameter iphase_orbit semimajor_orbit orbitalperiod eccentricity periapsis inclination Rstar Mstar1 Mstar2 iphase_spiral semimajor_spiral b omega inclination_spiral
Value 2.150000e-01 1.580000e+00 2.090000e+00 0.000005 5.000000e-06 72.000000 12.000000 20.735000 1.39 0.499992 5.000500e+01 -0.050000 0.050000 7.200000e+01
Std 1.196357e+06 4.569182e+06 3.836764e+06 0.000105 1.305855e-09 7.368156 601608.972213 348170.132775 0.00 0.394674 5.964791e-07 0.000022 0.001275 2.582047e-07
No description has been provided for this image
In [ ]:
Copied!

Previous Next

Built with MkDocs using a theme provided by Read the Docs.
« Previous Next »